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Abstract: Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool used
to study the molecular environment of flurophores. In time domain FLIM, extracting lifetime
from fluorophores signals entails fitting data to a decaying exponential distribution function.
However, most existing techniques for this purpose need large amounts of photons at each pixel
and a long computation time, thus making it difficult to obtain reliable inference in applications
requiring either short acquisition or minimal computation time. In this work, we introduce a new
nonparametric empirical Bayesian framework for FLIM data analysis (NEB-FLIM), leading to
both improved pixel-wise lifetime estimation and a more robust and computationally efficient
integral property inference. This framework is developed based on a newly proposed hierarchical
statistical model for FLIM data and adopts a novel nonparametric maximum likelihood estimator
to estimate the prior distribution. To demonstrate the merit of the proposed framework, we
applied it on both simulated and real biological datasets and compared it with previous classical
methods on these datasets.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fluorescence lifetime imaging microscopy (FLIM) is a widely used technique to reveal the
changes in fluorophores’ local environments by measuring fluorophores’ lifetime [1,2]. The
application of FLIM includes, but is not limited to, measuring local environmental parameters
within cells such as pH or oxygenation state, studying protein interactions by quantifying Förster
resonance energy transfer (FRET), and investigating the metabolic state of cells [2]. In particular,
due to noninvasiveness and high-resolution, FLIM has been used to monitor the dynamic change
in metabolic state of living cells by measuring lifetime of auto-fluorescent properties of reduced
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in cancer
research [2–4].
To investigate and compare different types of cells/tissues, the typical analysis workflow for

FLIM data follows a two-step procedure [3–5]: 1) pixel-wise lifetime recovery at each pixel: the
lifetime of each component and component contribution are extracted from fluorescence signal
by fitting data to a single/double decaying exponential distribution function [6–9]; 2) integral
property inference: one or several summary statistics of each sample are calculated from all
pixel-wise estimations of the previous step, e.g. the mean or standard deviation of lifetime or
component contribution. The pixel-wise fitted lifetime and these summary statistics are then
used to investigate the spatial change within each sample and the difference across groups of
samples, respectively.
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To infer pixel-wise lifetime, numerous exponential curve fitting approaches have been proposed
[6–18]. Due to easy implementation, pixel-wise analysis has been arguably the most widely used
strategy for pixel-wise lifetime recovery, including least-squares fitting and maximum likelihood
estimation (MLE) approaches [8–10]. One main obstacle for pixel-wise analysis is that it requires
a large number of photons per pixel [19], resulting in long photon collection time, usually more
than tens of seconds for the whole image. This time requirement for photon collection prohibits
FLIM to be used for acquisition at higher speeds [20]. Despite the recent improvement in fast
detector [21], one of the most commonly used computation strategies to alleviate this issue is
global analysis, which estimates global fluorescence lifetime by using photons across all pixels
and then calculates pixel-wise component contribution [7,12,13]. Although global analysis might
provide more robust estimation in low-photon regime, it brings irreversible bias for pixel-wise
lifetime estimation due to neglect of spatial change in fluorescence lifetime. Therefore, there is a
need for more robust pixel-wise lifetime fitting algorithms that work for low-photon regimes.

On the other hand, the goal of integral property inference in the classical workflow is different
from pixel-wise lifetime recovery because only summary information is needed in this step. As
described above, the most common way is direct calculation from pixel-wise recovered lifetime.
However, this way requires reliable estimation of pixel-wise lifetime, which usually needs many
photons at each pixel as we previously discussed. Moreover, it usually takes long computation
time, which brings difficulty to analysis in real time monitoring [4] and large scale experiments,
especially when there are thousands of datasets to compare in high-throughput screenings [7,22].
The main difficulty lies in the pixel-wise fitting step, as pixel-wise lifetime recovery needs a
large number of photons per pixel and thousands of iterative instrumental response function
deconvolutions. Therefore, a natural question arises: can we just conduct integral property
inference directly and bypass the pixel-wise lifetime recovery step? In this paper, we show this is
feasible.
Motivated by these two needs, we introduce a new Nonparametric Empirical Bayesian

framework for analyzing FLIM data, referred as NEB-FLIM, to improve both pixel-wise lifetime
recovery and integral property inference in the classical workflow. Specifically, we introduce a
hierarchical statistical model for FLIM data by assuming that the fluorescence lifetime at each pixel
is drawn from some prior distribution. Under this hierarchical model, NEB-FLIM first adopts
a non-parametric maximum likelihood estimator (NPMLE) to estimate the prior distribution
by using all photons of the image. This estimated prior distribution is then incorporated into
subsequent bayesian analysis for pixel-wise lifetime recovery. Through this, NEB-FLIM provides
a more accurate and pixel-dependent estimation of fluorescence lifetime. NEB-FLIM uses a
plugin estimator of previously estimated prior distribution to conduct integral property inference
directly, instead of summarizing from pixel-wise recovered lifetime. In doing so, summary
statistics can be computed in a much more computationally efficient and more robust fashion.
Thus, it allows its use in applications when low acquisition or computation time is required.

2. Methods

In this section, we introduce a hierarchical statistical model for FLIM data in Section 2.1, the
nonparametrical estimator of prior distribution in Section 2.2, the pixel-wise bayesian estimator
in Section 2.3, and the method for integral property inference in Section 2.4.

2.1. Statistical model for photon-counting FLIM data

In this section, we introduce a statistical model for photon-counting time-domain FLIM data,
which is collected by a time-correlated single photon counting system (TCSPC) [1,2]. The form
of this statistical model is different from commonly-used physical exponential decay models for
fluorophores [1,2], but they are equivalent in terms of data analysis. We adopt this model because
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it is more convenient for statistical analysis. In the end of this section, we compare these two
equivalent models and point out their connections.
In light of fluorophores’ properties [1,2], the decay of the fluorescence intensity follows

an exponential decay law F(t) = F0e−t/τ , where F(t) is fluorescence intensity at time t, F0
is fluorescence intensity at time t = 0, and τ is defined as lifetime of fluorescence, the main
parameter of interest in this article. Thus, our statistical model assumes each photon emitted by
fluorophores obeys the following exponential distribution τ−1e−t/τ when t>0. To measure τ by
TCSPC, a pulsed laser is used to excite the sample repeatedly with time period Tp, and only the
first photon within every period is recorded. Thus, if the photons emitted from previous periods
are taken into account, the probability distribution can be expressed as

g(t) :=
∞∑

n=0

1
τ

e−
t+nTp
τ =

1
τ(1 − e−Tp/τ)

e−
t
τ , when 0 <t < Tp.

Due to instrumental responding delay and dispersion of the laser, we need to consider the extra
error brought on by the instruments themselves, i.e the distribution of observed fluorescence
lifetime is expressed as the circular convolution form (g ⊗ h)(t), when 0 < t< Tp, where g(t) can
be seen as a periodic function with period Tp, and h(t) is instrumental response function (IRF),
which can be assumed known in advance or estimated accurately in separate experiment. Besides
the error brought by IRF, another corruption comes from the background light. Suppose the
ratio of background photons is α, then the distribution function of arriving photon times can be
written as

f (t) :=
α

Tp
I(0 < t< Tp) + (1 − α)(g ⊗ h)(t), when 0 < t < Tp. (1)

The design of the TCSPC technique only allows us to know a rough interval of each arriving
photon. More specifically, suppose the detection range (0,Tp] is divided into m bins equally
Bj =

(
(j − 1)Tp/m, jTp/m

]
, j = 1, . . . ,m. When the fluorescence lifetime is τ, the probability of

a photon arriving at bin Bj is

P(τ)j =

∫
Bj

f (t)dt. (2)

Write P(τ) = (P(τ)1 , . . . ,P(τ)m ) as the probability of mono-exponential model defined in (2) when
fluorescence lifetime is τ. The observational data read from TCSPC are the numbers of photons
in each bin, Nj, j = 1, . . . ,m, which can be assumed to be drawn from multinomial distribution
Multi(

∑m
j=1 Nj,P(τ)). The goal of fluorescence lifetime analysis is to estimate τ based on histogram

N1, . . . ,Nm.
In the above statistical model, we focus on the situation where all fluorescence distribution

have the same lifetime, i.e. mono-exponential component model. In a lot of applications, the
fluorescence distribution shows the status of the fluorophore, its confirmations and interactions
with its local micro-environment [2]. For example, NADH has different fluorescence lifetime
when it is bound and unbound to proteins [23]. In such situations, the decay of the fluorescence
intensity follows a double exponential decay law F(t) = F0

(
A1e−t/τ1 + A2e−t/τ2

)
, where Ak is the

fraction of the kth component, also called component contribution, such that A1 + A2 = 1 and τk
is lifetime of the kth component. For convenience of statistical analysis, our statistical model
assumes each photon follows a mixture of exponential distributions, i.e.

a
1
τ1

e−
t
τ1 + (1 − a)

1
τ2

e−
t
τ2 , when t>0.

This representation is a bit different from multiple exponential decay law, and we have different
interpretations for a and A1 and A2. To distinguish them, we call a the statistical component
contribution and A1 and A2 the physical component contribution. This representation is actually
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equivalent to multiple exponential decay law, so estimation of a and estimation of A1 and A2 can
naturally lead to one another. In most of this article, we adopt the mixture model representation
(i.e. adopting a) for convenience of statistical analysis and discuss how the estimation of a can be
transformed to the estimation of A1 and A2 in later sections.
Following the same conduction in setting of a single type of fluorescence, the distribution

function of arriving photon times is thus a mixture distribution f (t) = afτ1 (t)+ (1− a)fτ2 (t), where
fτk (t) has the same form of distribution in Eq. (1). Besides τ := (τ1, τ2), the contribution of each
component a is of more interest in many applications. Hence, the lifetime analysis of double
exponential components model aims to recover a and τ from observations N = (N1, . . . ,Nm),
which is drawn from Multi(

∑m
j=1 Nj, aP(τ1) + (1 − a)P(τ2)).

To reflect the spatial trend of fluorescence lifetime, the arrival time of photons are recorded at
each pixel i ∈ I through microscopy scanning techniques. More specifically, the observed data at
each pixel i ∈ I is a histogram of photon counts Ni = (Ni1, . . . ,Nim), and the goal is to study the
pixel-wise fluorescence lifetime τi = (τi1, τi2) and pixel-wise statistical component contribution
ai of each pixel from the pixel-wise observations Nis. In other words, the FLIM data can be seen
generated from thousands of parallel double exponential models. Figure 1 illustrates the data
structure of fluorescence-lifetime imaging microscopy (FLIM). In order to analyze data from all
pixels jointly, we further assume τi1 and τi2 are independently drawn from two prior distributions:
π1(t) and π2(t). The prior distribution π1(t) and π2(t) can be also seen as empirical distribution
of τi

π1(t) =
1
|I|

∑
i∈I

δτi1 and π2(t) =
1
|I|

∑
i∈I

δτi2 ,

where δx is delta function at x, and |I| is the number of pixels in FLIM image. By the definition
of prior distributions, the FLIM data can be seen generated from the following hierarchical model

τi1 ∼ π1(t) and τi2 ∼ π2(t)
Ni ∼ Multi

(
ni, aiP(τi1) + (1 − ai)P(τi2)

)
where ni =

∑m
j=1 Nij is the number of photons observed at pixel i. Based on this model, we

propose our nonparametric empirical bayesian framework for FLIM data.

Fig. 1. The data structure of fluorescence-lifetime imaging microscopy photon counting
data.
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2.2. Estimation of prior distribution

In most traditional bayesian FLIM analysis methods, the prior distribution of lifetime is usually a
predetermined distribution, which is either manually input or uninformative prior [14,15,17,18].
These subjective prior distribution leads to unavoidable bias when misspecified. Thus, we opt to
estimate prior distributions by maximizing marginal likelihood distribution.
The model of FLIM data defined in Section 2.1 suggests that, if we pool all photons across

pixels of images together, these photons can be seen drawn from a single mixture model

τl ∼ π
∗(t)

jl ∼ Multi(1,P(τl)), l = 1, . . . , n∗ :=
∑
i∈I

ni. (3)

Here, jl represents the jlth bin from m bins, n∗ is total number of photons of all pixel of the FLIM
image, and π∗(t) can be written as

π∗(t) =
1
n∗

∑
i∈I

[
niaiδτi + ni(1 − ai)δτi2

]
.

One main advantage of FLIM is that fluorescence lifetime is not dependent on intensity values,
which is defined as the number of photons at each pixel [1,2]. Thus, it is natural to assume
the number of photons at each pixel, the statistical component contribution, and lifetime are
independent from each other

1
|I|

∑
i∈I

f1(ni)f2(ai)f3(τik) =

(
1
|I|

∑
i∈I

f1(ni)

) (
1
|I|

∑
i∈I

f2(ai)

) (
1
|I|

∑
i∈I

f3(τik)

)
(4)

for any measurable function f1, f2, and f3, and k = 1 or 2. With this independence assumption
(4), the combined prior distribution π∗(t) can be rewritten as a linear combination of prior
distributions π1(t) and π2(t)

π∗(t) = a∗π1(t) + (1 − a∗)π2(t),

where a∗ =
∑

i∈I ai/|I|. This motivates us to firstly estimate π∗(t) by pooling all photons together
and then segment estimated π∗(t) into π1(t) and π2(t).
The model in (3) can be written in its equivalent form

M := (M1, . . . ,Mm) ∼ Multi
(
n∗,

∫
P(t)dπ∗(t)

)
, (5)

where Mj is the total number of photons in bin j across the pixels of image, i.e. Mj =
∑

i∈I Nij.
The form in (5) suggests that recovering π∗(t) from count data M is a deconvolution problem. To
solve this deconvolution problem, we consider nonparametric maximum likelihood estimator
(NPMLE), as we do not put any shape or parametric form assumptions for the distribution π∗(t).
NPMLE for mixture model is firstly introduced in [24] and then developed by [25–27] and so on.
To be specific, we assume the support of distribution π∗(t) belongs to some known interval
[TL, TU] and divide [TL, TU] into L equal-spaced interval with L+1 points TL = h0< . . . <hL = TU .
This bounded support assumption is suitable in most applications, as the knowledge of an roughly
lifetime is available in advance. With this grid h0, . . . , hL, we can discretize the distribution π∗(t)



Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 5502

as a L dimension discrete distribution

π∗
∆
(t) =

L∑
l=1

p∗l δhl

where p∗l =
∫ hl
hl−1

dπ∗(t). To recover π∗
∆
(t), it is sufficient to recover p∗ = (p∗1, . . . , p

∗
L). After

discretization, the likelihood function of marginal distribution of M can be written as

f (p1, . . . , pL) :=
n∗!

M1! . . .Mm!

m∏
j=1

(
L∑

l=1
plP(hl)

j

)Mj

,

where P(t)j is the probability defined in (2). The maximum likelihood estimator (MLE) is thus
defined as a solution of the following convex optimization problem

min
(p1,...,pL)

−

m∑
j=1

Mj log

(
L∑

l=1
plP(hl)

j

)
s.t.

L∑
l=1

pl = 1 and pl ≥ 0, l = 1, . . . ,L.

(6)

As suggested in [27], this convex optimization problem can be solved efficiently by modern
interior point methods. The estimated prior distribution π̂∗(t) thus can be written as

π̂∗(t) =
L∑

l=1
p̂lδhl .

A typical example of prior distribution π̂∗(t) estimated by the above procedure is shown in Fig. 2.

Fig. 2. A typical example of empirical prior distribution estimated from data.

After estimating π̂∗(t), we now segment this distribution to recover π1(t) and π2(t). Generally,
it is impossible to recover π1(t) and π2(t) by π̂∗(t) alone because they are not identifiable if there
is overlapping area between them. To address this issue, we appeal to the observation that the two
prior distributions can be separated very well in many FLIM applications. For example, the two
components of NADH, bound and unbound, have lifetimes of roughly 400 to 500 picosecond(ps)
and 2000 to 2500 ps, respectively [3]. Another example in FRET quantification is NowGFP, an
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improved version of green fluorescent protein. Its two components, close to and far away from
acceptor such as mRuby2 or tdTomato, have lifetimes of roughly 2000 to 3000 ps and 5000 ps
[28]. Thus, we shall assume π1(t) from π2(t) are identifiable in the following sense

sup{t : π1(t)>0}< inf{t : π2(t)>0}. (7)

Motivated by this identification assumption (7), we segment π̂∗(t) by minimizing intra-component
variance, equivalently maximizing inter-component variance.

To be specific, the segmentation threshold tT can be seen as the solution of the below
optimization problem

tT = argmax
r∈{h1,...,hL−1 }

â∗(r)(1 − â∗(r))
[
τ̂∗1 (r) − τ̂

∗
2 (r)

]2
(8)

where

â∗(r) =
L∑

l=1
p̂lI(hl ≤ r), τ̂∗1 (r) =

∑L
l=1 hlp̂lI(hl ≤ r)

â∗(r)
and τ̂∗2 (r) =

∑L
l=1 hlp̂lI(hl>r)
1 − â∗(r)

.

Here, â∗(r) is the contribution of the first component, τ̂∗1 (r) and τ̂
∗
2 (r) are the average lifetimes of

the first and second component if we choose the segmentation threshold at r. With segmentation
threshold tT , the estimated π1(t), π2(t), and a∗ can be defined as

π̂1(t) =
∑L

l=1 p̂lδhlI(hl ≤ tT )
â∗

, π̂2(t) =
∑L

l=1 p̂lδhlI(hl>tT )
1 − â∗

,

and

â∗=
L∑

l=1
p̂lI(hl ≤ tT ).

Clearly, this segmentation procedure relies on the separation assumption (7). When the distance
between two components inf{t : π2(t)>0} − sup{t : π1(t)>0} is larger, the prior distributions
π̂1(t) and π̂2(t) can be separated more easily. Due to the fact that the prior distributions are
estimated by pooling all photons together, we could expect very accurate estimations and are
therefore able to separate two component in a more accurate way than conventional single-pixel
fitting procedure. With π̂1(t), π̂2(t), and â∗, we are in position to conduct pixel-wise lifetime
recovery and integral property inference.

2.3. Pixel-wise Bayesian analysis

In this section, we show the pixel-wise lifetime recovery benefits from accurate estimated prior
distribution as well. To incorporate the estimated prior distribution, we opt to adopt the empirical
bayesian framework [26,29–31] to analyze FLIM photon counting data. Under the hierarchical
model defined in Section 2.1, the posterior distribution of τi, ai can be written as

p(τi, ai |Ni) ∝
(
∑m

j=1 Nij)!
Ni1! . . .Nim!

m∏
j=1

(
aiP(τi1)

j + (1 − ai)P(τi2)
j

)Nij
2∏

k=1
πk(τik).

This posterior distribution can be seen as a mixture of local information (likelihood function) and
global information (the prior distribution estimated from data across the pixels). The estimation
at each pixel could be expectation or mode of the above posterior distribution. It is also worth
noting that the expectation and mode of posterior should be similar because Bernstein-von Mises
theorem suggests the posterior distribution converges to normal distribution when sample size at
each pixel ni goes to infinity [32].
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Here, we consider the maximum of posterior distribution as our estimator after plugging in
the prior distribution we estimated in Section 2.2. To be specific, the maximum of posterior
distribution can be obtained by optimizing the following function

min
τi1,τi2,ai

−

m∑
j=1

Nij log
(
aiP(τi1)

j + (1 − ai)P(τi2)
j

)
−

2∑
k=1

log (π̂k(τik)) . (9)

To solve the above optimization problem, any optimization algorithm could be employed. In
particular, we adopt the expectation-maximization (EM) algorithm [33] to solve the above
optimization problem because it can provide a relatively stable estimation. At pixel i, a random
variable zis ∈ {1, 2} is assigned to indicate which component the sth photon comes from, i.e.

jis |zis ∼ Multi(1,P(τizis )
) and P(zis = 1) = 1 − P(zis = 2) = ai, l = 1, . . . , ni,

where jis is a random variable indicating into which bin the sth photon falls. EM algorithm
consists of two main steps: expectation (E-step) and maximization (M-step). In the E-step, the
posterior probability of zis is evaluated given the estimation in the last step

γ
(t)
ij = P(zis = 1|jis = j) =

a(t)i P
(
τ
(t)
i1

)
j

a(t)i P
(
τ
(t)
i1

)
j + (1 − a(t)i )P

(
τ
(t)
i2

)
j

.

Then, the Q function in EM algorithm can be written as

Q(τi, ai |τ
(t)
i , a(t)i )

=

m∑
j=1

Nij

[
γ
(t)
ij log

(
aiP(τi1)

j

)
+ (1 − γ(t)ij ) log

(
(1 − ai)P(τi2)

j

)]
+

2∑
k=1

log (π̂k(τik)) .

In the M-step, we can then maximize ai, τi1, and τi2 in Q(τi, ai |τ
(t)
i , a(t)i ) separately

a(t+1)i =

∑m
j=1 Nijγ

(t)
ij∑m

j=1 Nij
, τ

(t+1)
i1 = argmax

τi1

m∑
j=1

Nijγ
(t)
ij log P(τi1)

j + log (π̂1(τi1)) ,

and

τ
(t+1)
i2 = argmax

τi2

m∑
j=1

Nij(1 − γ(t)ij ) log P(τi2)
j + log (π̂2(τi2)) .

These E-step and M-step are repeated until the estimation converges.
One challenge of EM algorithm in practice is the choice of initial values, τ(0)i1 , τ(0)i2 , and a(0)i , as

different initial values might lead to different local optimum points. Fortunately, the estimated
prior distribution could provide a good guidance for good choices of initial values because the
support of π̂1(t) and π̂2(t) can allow us to narrow the search region down. More specifically,
we choose τ(0)i1 as 5% lower quantile of π̂1(t), τ(0)i2 as 5% upper quantile of π̂2(t), and a(0)i as the
estimation â∗. When the support of prior distribution lies in a small region, the EM algorithm
can be accelerated a lot based on the above choices of initial values. Another challenge of the
EM algorithm is slow convergence speed in practice. To accelerate the EM algorithm, we also
adopt the acceleration scheme in [34].



Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 5505

2.4. Integral property inference

Different from pixel-wise lifetime recovery, integral property inference aims to estimate/test a
functional of pixel-wise parameters. Under the hierarchical model in Section 2.1, a functional of
pixel-wise parameters can be written as a functional of prior distribution. Thus, we consider the
estimation of linear functional of prior distribution in this section. To be specific, for any given
function g(t) defined on [TL,TU], the goal is to estimate the following linear functional

Fk(g) =
∫ TU

TL

g(t)dπk(t), k = 1, 2. (10)

Most summarized statistics of interest in FLIM studies can be written in the combination form of
linear functional. For example, the mean and variance of lifetime of the kth component τ∗k and
v(τk) can be written as

τ∗k :=
∫

tdπk(t) and v(τk) :=
∫

t2dπk(t) −
(∫

tdπk(t)
)2

. (11)

Another example is the mean of physical contributions of the first and second components

A∗1 :=
1
|I|

∑
i∈I

Ai1 =
a∗

∫
1
t dπ1(t)

a∗
∫

1
t dπ1(t) + (1 − a∗)

∫
1
t dπ2(t)

and A∗2=1 − A∗1.

Therefore, we mainly focus on estimation of functional in (10).
To summarize the pixel-wise information, the most commonly used estimator in practice for

Fk(g) is plugin estimator of pixel-wise fitted lifetime in the last section

F̂naive
k (g) =

1
|I|

∑
i∈I

g(τ̂ik), k = 1, 2.

If we write the empirical distribution of τ̂ik as π̃k, then the above estimator can be rewritten as
F̂naive

k (g) =
∫

g(t)dπ̃k. This suggests that F̂naive
k (g) is a plugin estimator of empirical distribution of

τ̂ik. Motivated by this observation, we consider a plugin estimator of estimated prior distribution
in Section 2.2

F̂NEB
k (g) =

∫
g(t)dπ̂k(t), k = 1, 2.

As we mentioned in the introduction, F̂NEB
k (g) is a much more accurate and computationally

efficient estimator for Fk(g) because NPMLE π̂k(t) is more precise and easy to compute. Later,
we discuss its performance in more details in Section 3.

To illustrate the idea of NPMLE plug-in estimator, we show the explicit expression of five
commonly used summarized statistics: mean of lifetime τ∗1 and τ

∗
2 , mean of physical contributions

A∗1 and A∗2, and mean of average lifetime

τ∗m :=
1
|I|

∑
i∈I
(Ai1τi1 + Ai2τi2) .

By plugging in π̂1(t) and π̂2(t), the estimator for these summarized statistics are defined as

τ̂∗1=

∫
tdπ̂1(t) and τ̂∗2=

∫
tdπ̂2(t),

Â∗1=
â∗

∫
1
t dπ̂1(t)

â∗
∫

1
t dπ̂1(t) + (1 − â∗)

∫
1
t dπ̂2(t)

and Â∗2=1 − Â∗1,
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and
τ̂∗m = Â∗1τ̂

∗
1+Â∗2τ̂

∗
2 .

All above estimators are transformed from prior distribution estimation π̂∗(t) directly, so they are
easy to compute.

2.5. Practical considerations

After we combine all components introduced in the previous sections, the new non-parametric
empirical bayesian framework for FLIM data (NEB-FLIM) is summarized in Fig. 3. In the step
of prior distribution estimation, the core component is the optimization problem in (6). After
obtaining data Mj for each bin, the optimization problem in (6) is ready to be solved by ‘REBayes’
R package [35]. To segment the estimated prior distribution, we calculate the object function (8)
at each hl, l = 1, . . . ,L and take hl achieving the maximum of them as the cutting threshold tT .

Fig. 3. Flow chart of the non-parametric empirical bayesian framework for FLIM data
(NEB-FLIM).

After estimating the prior distribution, the estimated prior distribution can be then used to
conduct integral property inference or pixel-wise Bayesian analysis. The integral property
inference can be completed by common used numerical integration algorithms. For simplicity,
we just take

∑L
l=1 g(hl)pl as F̂NEB

k (g) for any function g and k = 1, 2. Here, pl is the probability
mass of π̂k(t) at lth bin between hl−1 and hl. The pixel-wise Bayesian analysis is implemented by
EM algorithm as we described in previous section. We adopt scheme of [34] to accelerate the
EM algorithm and stop the iteration when the object function is increased less than 10−2 (or any
small number) in one iteration or number of iteration reaches some maximum number.
In this NEB-FLIM framework, there are mainly three tuning parameters: the lower bound of

lifetime TL, the upper bound of lifetime TU and the number of intervals L. TL and TU are chosen
according to the specific application. The choice of L is very important, as larger L usually
implies more accurate estimation of prior distribution, but more computation time as well. We
discuss the choice of L in more details in the later section.

3. Results

We now conduct numerical experiments to demonstrate the merits of our nonparametric empirical
bayesian FLIM analysis framework (NEB-FLIM) in this section.

3.1. Simulation

The first simulation experiment we consider here is to assess the performance of prior distribution
π∗(t) estimation. To this end, we simulated FLIM images on a 32 × 32 square lattice I according
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to the model described in Section 2.1. We assumed the period of laser excitation, Tp, was 10000
ps (or 10 ns), ratio of background photons, α, was 0.001, and [0,Tp] was divided into m = 256
bins. The IRF h we use in this experiment is gaussian distribution function with mean 1500
ps and standard deviation 100 ps. At each pixel i ∈ I, we assumed there were two types of
fluorescence, and Ni was randomly generated from the following bi-exponential model

a
1
τ1

e−
t
τ1 + (1 − a)

1
τ2

e−
t
τ2 .

The pixel-wise lifetime of both components (τi1, τi2) and the contribution of the first component
ai are shown in Fig. 4. For simplicity, the number of photons at each pixel i ∈ I is assumed to be
equal, i.e. ni = n, ∀i ∈ I.

Fig. 4. Ground truth of τ1, τ2, and a in simulation. All lifetimes in the figures are shown in
picosecond(ps).

In this simulation experiment, we compare the performance of prior distribution estimation at
different numbers of photons per pixel n and different numbers of intervals L in NPMLE. To
assess the performance, we calculate the L2 distance between cumulative distribution of the true
prior distribution π∗(t) and our estimator π̂∗(t)

D(π∗(t), π̂∗(t)) =
∫ TU

TL

(
Fπ(t) − F̂π(t)

)2
dt,

where

Fπ(t) =
1
|I|

∑
i∈I
[aiI(τi1 ≤ t) + (1 − ai)I(τi2 ≤ t)] and F̂π(t) =

L∑
l=1

plI(hl ≤ t).

We chose TL = 200 ps and TU = 3000 ps in this experiment and assumed they are known. We
conducted the experiment when number of photons at each pixel n was 101, 101.5, 102, 102.5,
103, 103.5, and 104 and number of intervals L in NPMLE was 400, 600, 800, 1000, and 1200.
The experiment was repeated 100 times at each combination of n and L. We summarized the
mean error of D(π∗(t), π̂∗(t)) in 100 experiments in Fig. 5. The Fig. 5 suggests that the prior
distribution in general is well estimated, even in a low photon regime, e.g. n = 10. Through the
results in Fig. 5, we can also conclude that increasing L could help reduce the bias when the
number of photons is large and small L is relatively robust when there are not many photons at
each pixel.
We designed the next two simulation experiments to compare NEB-FLIM and previous

methods. In particular, we mainly focus on two of the most popular methods: pixel-wise analysis
and global analysis. As mentioned before, pixel-wise analysis methods fit the exponential curve
only by photons at each pixel [8–10]. In this simulation experiment, we only focus on likelihood
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Fig. 5. Performance of lifetime prior distribution estimation at different n and L: the average
error D(π∗(t), π̂∗(t)) against logarithm of number of photons per pixel log n. Different colors
represent different numbers of intervals L.

based pixel-wise analysis, as it has been shown more efficient than other popular pixel-wise
analysis methods [9]. The global analysis estimates lifetime of two components globally and
then estimates the components’ contribution at each pixel [7,12,13]. The two experiments are
designed to compare the performance in terms of pixel-wise lifetime recovery and integral
property inference, respectively.
We now compare performance of pixel-wise lifetime recovery. To this end, we still followed

the bi-exponential model and chose the same setting with the previous experiment. L was chosen
at L = 1400. The performance of each method is assessed by the mean square error

1
|I|

∑
i∈I
(r(τ̂i, âi) − r(τi, ai))

2 ,

where r(τi, ai) can be any function of τi and ai. In particular, we chose r(τi, ai) = τi1, τi2 and
ai in this simulation experiment. We conducted the experiment when the number of photons
at each pixel n was 102, 102.5, 103, 103.5, 104, and 104.5. The results are summarized in Fig. 6.
As suggested by Fig. 6, pixel-wise analysis is more reliable than global analysis when there are
enough available photons at each pixel, while the latter can provide relatively robust estimations
in the low-photon regime. Figure 6 also shows that NEB-FLIM is always able to achieve better
performance due to the fact that empirical Bayesian analysis combines both local and global
information.
We design the next experiment to assess performance of integral property inference. To be

specific, we compare four different methods to estimate the mean of lifetime τ∗1 and τ∗2 defined
in (11). The four methods we would like to compare are: direct integral property inference in
NEB-FLIM(PI-NEB), mean of pixel-wise lifetime estimated by NEB-FLIM(PBA-NEB), mean
of pixel-wise lifetime estimated by pixel-wise analysis(PA), and mean of pixel-wise lifetime
estimated by global analysis(GA). To compare these methods, we follow the same settings of
previous experiments, but consider different sample sizes per pixel: n = 50, 100, and 200.
For each n, the experiment was repeated 100 times, and for each time, we applied these four
methods on the generated FLIM image. We assessed the performance of estimating τ∗1 and τ∗2 by
evaluating square root of mean square error

e(τk) :=

√√√
1
H

H∑
h=1
(τ̂∗kh−τ

∗
k )

2,
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Fig. 6. Pixel-wise recovery performance comparisons between pixel-wise analysis, global
analysis, and NEB-FLIM: the plots are of mean square error across the image against the
number of photons per pixel. All results of lifetimes in the figures are shown in ps2. Left is
plot of τ1; middle is plot of τ2 and right is plot of a.

where H is total number of simulation experiments and τ̂∗kh is the estimation τ∗k at the hth
simulation experiment. The results are summarized in Table 1. As shown in Table 1, it is clear
that direct integral property inference in NEB-FLIM(PI-NEB) has better performance than the
other methods.

Table 1. Accuracy comparisons between different integral property inference methods:
PI-NEB=direct integral property inference in NEB-FLIM, PBA-NEB=mean of pixel-wise lifetime
estimated by NEB-FLIM, PA=mean of pixel-wise lifetime estimated by pixel-wise analysis, and

GA=mean of pixel-wise lifetime estimated by global analysis. The error criteria is square root of
mean square error e(τk ) for k = 1, 2. All results in the table are shown in ps.

n = 200 n = 100 n = 50

e(τ1) e(τ2) e(τ1) e(τ2) e(τ1) e(τ2)

PI-NEB 10.32 16.47 10.10 20.08 17.36 29.43

PBA-NEB 12.50 26.30 14.53 174.43 65.83 315.41

PA 9.73 114.83 6.68 310.79 14.53 452.99

GA 4.72 13.18 12.70 53.87 34.42 73.13

In the last experiment, we evaluate different methods for integral property inference from
computation efficiency angle. In particular, we followed the same bi-exponential model in
previous experiments and simulated image on 32 × 32, 64 × 64 and 128 × 128 square lattice.
The number of photons at each pixel n is chosen as 103. We compare the computation time
of 4 different methods to estimate the mean of lifetime τ∗1 and τ∗2 : direct integral property
inference in NEB-FLIM with L = 400 and 800 (NEB-400 and NEB-800), plugin estimator of
pixel-wise lifetime estimated by pixel-wise analysis(PA), and plugin estimator of pixel-wise
lifetime estimated by global analysis(GA). To make comparison fair, all the algorithms are
implemented in R and evaluated in the same desktop (Intel Core i5 @3.4 GHz/16GB). The
computing times of all algorithms are reported in Table 2, which is based on 10 runs for each
image size. It is clear from Table 2 that direct integral property inference in NEB-FLIM is faster
than the other two methods. Moreover, the speed of NEB-FLIM mainly relies on the choice of L,
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but not the image size. It is also worth noting that the computation speed may depend on choice
the programming language, computing environment and specific implementation, so all these
algorithms might be accelerated under other programming languages or implementation.

Table 2. Computation speed comparisons between different integral property inference methods:
NEB-400, NEB-800=direct integral property inference in NEB-FLIM with L = 400 and 800, PA=plugin

estimator of pixel-wise lifetime estimated by pixel-wise analysis, and GA=plugin estimator of
pixel-wise lifetime estimated by global analysis. The computation time in the table is shown in

seconds.

Image Size NEB-400 NEB-800 PA GA

32 × 32 0.283 1.184 23.579 0.170

64 × 64 0.293 1.181 94.650 0.689

128 × 128 0.331 1.200 375.310 2.581

3.2. Real data example

Finally, we consider a specific biological dataset examining the metabolic state of cancer/normal
living cells by measuring lifetime of reduced nicotinamide adenine dinucleotide (NADH). FLIM
has been shown to be able to distinguish between free and protein bound state of NADH, as the
two states of NADH have different fluorescence lifetimes [3,36]. The first component refers to
free NADH, and the second component refers to the protein-bound NADH. Higher contribution
of free NADH and hence lower average lifetime value, A1τ1 + A2τ2, has been found to correlate
with higher glycolytic metabolism. Apart from NADH lifetime imaging, FLIM can also be used
to visualize flavin adenine dinucleotide (FAD) lifetime for early detection of cancer and for other
micro-environment measurement of viscosity, pH and others [4].
This FLIM data set includes NADH FLIM data of MDA-MB-231 breast cancer cells and

MCF10A normal cells. The excitation source was a Ti:Sapphire laser (Spectra Physics; Maitai)
tuned to wavelength of 740 nm. The excitation and emission were coupled through an inverted
microscope (Nikon; Eclipse TE300) with a 20x objective (Nikon, Plan Fluor, N.A. 0.75). A
450/70-nm band-pass emission filter (Semrock, Rochester. NY) was also used to selectively
collect the NADH fluorescence emission signal. For each type of cell, FLIM images were
collected at 256x256 resolution at 4 different durations(20, 60, 120, and 240 seconds) using SPC-
150 Photon Counting Electronics (Becker & Hickl GmbH, Berlin, Germany) and Hamamatsu
H7422P-40 GaAsP photomultiplier tube (Hamamatsu Photonics, Bridgewater, NJ). Urea crystals
were used to measure the Instrumental Response Function (IRF) with a 370/10 bandpass emission
filter (Semrock, Rochester. NY). Emission intensity was checked by the photon counts after
each imaging session to make sure there was no photobleaching or photodamage of the sample.
For each duration and sample, the average numbers of photons per pixel, n̄, are summarized in
Table 3.

We estimated the prior distribution of lifetime π∗(t) by setting TL = 2, TU = 4000, and L = 500.
We applied NEB-FLIM to extract summarized information directly from prior distributions
estimated by these 8 FLIM images. In particular, we estimated the mean of statistical component
contribution a∗, mean of lifetime of the first component τ∗1 , mean of lifetime of the second
component τ∗2 , mean of physical component contribution (after normalization) A∗1, A∗2 and mean
of weighted averaged lifetime τ∗m. All these results are summarized in Table 3. To assess
the potential uncertain brought by different field-of-views, we randomly chose regions of size
128 × 128 from the original image and applied intergal property inference of NEB-FLIM to
estimate mean of weighted averaged lifetime τ∗m on each chosen region. The estimated weighted
averaged lifetime τ∗m and corresponding standard deviation are reported in Fig. 7, which are based
on 100 runs for each combination of duration and cell type. Through Table 3 and Fig. 7, we can
conclude that the integral property inference of NEB-FLIM is relatively stable with respect to
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Table 3. Summarized information of the biological data set estimated by direct integral property
inference of NEB-FLIM: the average number of photons per pixel—n, the mean of statistical

component contribution a∗, mean of lifetime of the first component τ∗1, mean of lifetime of the
second component τ∗2, mean of physical component contribution (after normalization) A∗1, A∗2 and
mean of weighted averaged lifetime τ∗m All results of lifetime in the table are shown in picosecond.

Time n̄ â∗ τ̂∗1 τ̂∗2 Â∗1 Â∗2 τ̂∗m

MDA-MB-231 20s 32.1 0.212 324.2 2516.7 0.683 0.317 1018.3

60s 96.4 0.208 321.7 2506.5 0.675 0.325 1032.4

120s 200.0 0.207 331.1 2514.4 0.668 0.332 1055.2

240s 411.4 0.204 337.7 2526.1 0.661 0.339 1078.6

MCF10A 20s 27.1 0.162 567.5 2627.1 0.475 0.525 1648.8

60s 79.0 0.168 567.4 2625.1 0.486 0.514 1625.3

120s 155.7 0.158 573.4 2639.6 0.466 0.534 1676.0

240s 401.6 0.155 493.1 2670.1 0.499 0.501 1583.4

the imaging time. In other words, NEB-FLIM provides a robust estimation even in low-photon
regime. If we compare these two samples, the results suggest cancer cells MDA-MB-231 have a
larger mean of physical component contribution A1 and smaller weighted averaged lifetime τm
than normal cell MCF10A cells. This discovery is consistent with results of previous experiments
in [4]. The difference between NADH lifetime/cell metabolic state can be easily captured by our
new method when the imaging time is 20s (∼30 photons per pixel). It is also worth noting that
the processing time of integral property inference of NEB-FLIM on each image is less than 1
second on a common desktop (Intel Core i5 @3.4 GHz/16GB).

Fig. 7. Average estimated mean of weighted averaged lifetime τ∗m with error bar of double
standard deviation for each imaging duration and cell type. The plot is summarized from
results of intergal property inference of NEB-FLIM on 100 randomly chosen regions.

To compare performance of pixel-wise curve fitting, we applied NEB-FLIM, pixel-wise
analysis (maximum likelihood estimation based), and global analysis on these 8 FLIM images.
In particular, we did 3 × 3 binning at each pixel to accumulate more photons. To make the
comparisons fair, the initial values of pixel-wise analysis and global analysis were also guided by
the prior distribution as NEB-FLIM, although this way might improve the accuracy of pixel-wise
analysis and global analysis. Due to space limits, we only showed the physical component
contribution A2 and weighted average lifetime τm, which are shown in Fig. 8 and Fig. 9 (top
right corresponds to MCF10A cells and bottom left corresponds to MDA-MB-231 cells). To
summarize the fitting result of estimated lifetime, we also made density plot of pixel-wise
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estimated lifetime of MCF10A Cell in Fig. 10. Through Fig. 8, Fig. 9 and Fig. 10, our proposed
NEB-FLIM framework behaves almost the same with pixel-wise analysis when the number of
photons is large (imaging time 240s). Furthermore, if we regard the result of imaging time 240s
as a benchmark, we could see that the performance of our NEB-FLIM framework is better than
the other two methods when the imaging time is short (e.g. 60s).

Fig. 8. Comparisons of pixel-wise recovery result by pixel analysis, global analysis, and
empirical bayesian analysis on real datasets: pixel-wise physical component contribution A2.
Top right is MCF10A cells and bottom left is MDA-MB-231 cells. The imaging time from
top to bottom is 20s, 60s, 120s and 240s.
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Fig. 9. Comparisons of pixel-wise recovery result by pixel analysis, global analysis, and
empirical bayesian analysis on real dataset: pixel-wise weighted average lifetime τm in ps.
Top right is MCF10A cells and bottom left is MDA-MB-231 cells. The imaging time from
top to bottom is 20s, 60s, 120s and 240s.
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Fig. 10. Density plot of estimated weighted averaged lifetime τ∗m of MCF10A cell for
different pixel-wise lifetime recovery methods and imaging time: NEB=pixel-wise lifetime
estimated by NEB-FLIM, PA=pixel-wise lifetime estimated by pixel-wise analysis, and
GA=pixel-wise lifetime estimated by global analysis.

Finally, we compare the results of property inference (just as in the third simulation experiment).
The lifetimes of images with imaging time 20s and 240s are summarized in Table 4. We followed
the same procedure in Fig. 7 to evaluate the potential uncertain arose from choices of field-of-
views, which is summarized in Fig. 11. It is clear that all methods can detect the difference
of NADH lifetime between two types of cells. However, if we regard the recovery results of
pixel-wise analysis (PA) when the imaging time is 240s as the benchmark, the performance
of PI-NEB is better than the other methods when the imaging time is 20s (see e.g. MCF10A
cell), especially better than pixel-wise analysis, the most popular method. This suggests that
NEB-FLIM proposed in this article is able to recover more accurately summarized information
and tell subtle differences between cells in both high and low photon regimes.

Fig. 11. Average estimated mean of weighted averaged lifetime τ∗m with error bar of standard
deviation for different methods, imaging time and cell types. The results are summarized
from estimation results of NEB-FLIM on 100 randomly chosen regions for each combination
of method, imaging time and cell type.
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Table 4. Comparisons between different property inference methods on real data: PI-NEB=direct
integral property inference in NEB-FLIM, PBA-NEB=mean of pixel-wise lifetime estimated by
NEB-FLIM, PA=mean of pixel-wise lifetime estimated by pixel-wise analysis, and GA=mean of

pixel-wise lifetime estimated by global analysis. All results of lifetime in the table are shown in
picosecond.

Method â∗ τ̂∗1 τ̂∗2 Â∗1 Â∗2 τ̂∗m

MDA-MB-231, 20s PI-NEB 0.212 324.2 2516.7 0.683 0.317 1018.3

PBA-NEB 0.142 187.4 2492.7 0.688 0.312 907.5

PA 0.197 326.6 2585.3 0.666 0.334 1081.5

GA 0.196 312.6 2534.6 0.639 0.361 1115.4

MDA-MB-231, 240s PI-NEB 0.204 337.7 2526.1 0.661 0.339 1078.6

PBA-NEB 0.170 274.2 2517.9 0.648 0.352 1064.9

PA 0.183 322.3 2551.5 0.636 0.364 1132.9

GA 0.185 329.5 2547 0.628 0.372 1154.8

MCF10A, 20s PI-NEB 0.162 567.5 2627.1 0.475 0.525 1648.8

PBA-NEB 0.121 458.7 2637.4 0.496 0.504 1556.3

PA 0.153 589.8 2646.5 0.391 0.609 1841.4

GA 0.173 557.7 2629 0.466 0.534 1664.4

MCF10A, 240s PI-NEB 0.155 493.1 2670.1 0.499 0.501 1583.4

PBA-NEB 0.138 394.6 2668.6 0.516 0.484 1495.8

PA 0.152 485.4 2662.1 0.495 0.505 1584.6

GA 0.177 586.9 2718.1 0.496 0.504 1661.9

4. Discussion and conclusion

In this paper, we propose a new empirical bayesian framework for fluorescence lifetime imaging
microscopy data (NEB-FLIM). Different from previous analysis workflows, our new NEB-FLIM
framework first estimates the prior distribution of lifetime non-parametrically by using all photons
across the whole image. This empirical prior distribution can either be used to conduct integral
property inference directly or be incorporated into bayesian analysis to fit an exponential curve at
each pixel. Through this method, the summarized information can be estimated very accurately
and efficiently computationally. This leads to its potential usage in applications of FLIM requiring
either short acquisition or computation times, such as when previewing the lifetime status
of cells/tissues before formal analysis and real-time fluorescence lifetime tracking. Due to
incorporation of this empirical distribution, the pixel-wise lifetime recovered by NEB-FLIM
combines both global and local information, allowing more robust quantification of lifetime at
each pixel.
In this presented paper, we only focus on NEB-FLIM framework within the context of a

pixel-wise double exponential lifetime model. However, NEB-FLIM, as a generalized framework,
can be extend to multiple exponential lifetime models at each pixel. If we assume there is a large
gap between different components of lifetime, we can still apply NEB-FLIM to estimate prior
distributions by replacing the binary segmentation method with some clustering method which
segments the prior distribution into multiple pieces.
The key component to estimate the prior distribution in NEB-FLIM framework is the

deconvolution problem in (5). In NEB-FLIM, we adopt linear programming to solve it after
data collection. On the other hand, when data becomes available in a sequential order, this
deconvolution problem is still solvable if we adopt some online learning algorithm. In other
words, we can estimate the prior distribution at the same time as data acquisition. The prior
distribution estimation and integral property inference can be completed just after data collection.
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